Disinfection 101

Jim Gauthier, MLT, CIC Senior Clinical Advisor, Infection Prevention james.gauthier@diversey.com

DISCLOSURE

• Jim is employed by Diversey. His expenses to present (salary) are paid by this company. Diversey has had no input into this presentation from a commercial interest.

OBJECTIVES

- Discuss cleaning, disinfecting and sterilization
 - How they work
 - Common issues
 - Common disinfectant chemistries

KEY TERMINOLOGY

- Antimicrobial
 - capable of killing microorganisms. Does not specify the type or quantity of pathogens killed
- "cidal" versus "static"
- "cidal" means that the product is capable of killing the organism i.e. bactericidal kills bacteria
- "static" means it prevents the growth i.e. fungistatic prevents the growth of fungi
- Bactericidal
 - capable of killing bacteria.

KEY TERMINOLOGY

- Fungicidal capable of killing fungi
- Germicidal older term meaning the same as antimicrobial
- Virucidal capable of killing viruses
 - PHAC

- Virucide capable of killing a virus
- Broad-spectrum virucide representative hard to kill nonenveloped virus
 - poliovirus type 1, human adenovirus type 5, or bovine or canine parvovirus

EFF	ECT OF DISINFECT	ANTS C	ON MICROORGANISMS
	Organism	Туре	Examples
R^	Bacterial Spores	Spore	Bacillus anthracis, Clostridioides difficile
	Mycobacteria	Bacteria	M. tuberculosis
	Small non-enveloped virus	Virus	Poliovirus, Norovirus, Rhinovirus, Hep A
	Fungal spores	Fungus	Aspergillus, Penicillium, Trichophyton
	Gram negative bacteria	Bacteria	<i>E. coli</i> , Klebsiella including CRE, Pseudomonas, Acinetobacter
	Fungi (Vegetative)	Fungus	Candida
	Large Virus (non-enveloped)	Virus	Adenovirus, Rotavirus
S*	Gram positive bacteria	Bacteria	Staphylococcus including MRSA Enterococcus including VRE
	Virus (enveloped)	Virus	HIV, HBV, HCV, Influenza, RSV, SARS
[^] Resistant [*] Sensitive		Ad	apted from Rutala et al. ICHE 2014;35(7):862

DEFINITIONS

Cleaning

- Removing all foreign material (i.e. dirt, body fluids, lubricants) from objects by using water and detergents or soaps, and washing or scrubbing the object
- Cleaning must be done before any disinfection or sterilization process so that foreign material will not keep the process from working

Log

- Multiples of 10 (if base 10) equaling a % decrease
 - 2 log = 99%, 3 log = 99.9%, 6 log = 99.9999%

DEFINITIONS

Decontamination

- Make an object or surface safe to handle (see "Cleaning") Sanitizing
- A process that reduces the number of microorganisms on a surface
 - 3 log on non-food contact surfaces or soft surfaces (USA)
 - 5 log on food contact surfaces

Disinfection

- A process that eliminates many or all microorganisms except spores, and is done with liquid chemicals or by pasteurizing objects
- High, Intermediate, Low Levels

DEFINITIONS

Pasteurization (aka Thermal Disinfection)

- A high-level disinfection process using hot water at a temperature of 71°C (160°F) for a minimum exposure time of at least 30 minutes
- Generally used for respiratory equipment and tubing
- For food processing, much shorter contact time

DEFINITIONS

Sterilization

- A process that completely eliminates or kills all microorganisms using:
 - sterilizers that provide steam under pressure
 - dry heat
 - ethylene oxide (ETO) and other gases
 - liquid chemicals

DEFINITIONS

Antiseptic

- Agent used to reduce microbial load on skin or tissue
 - Alcohol-based hand rubs
 - Chlorhexidine tincture
 - Povidone Iodine

DEFINITIONS

Vegetative Bacteria

- The growing form of bacteria
 - Includes both Gram positive and Gram negative bacteria
 - Includes both aerobic and anaerobic bacteria

Spore

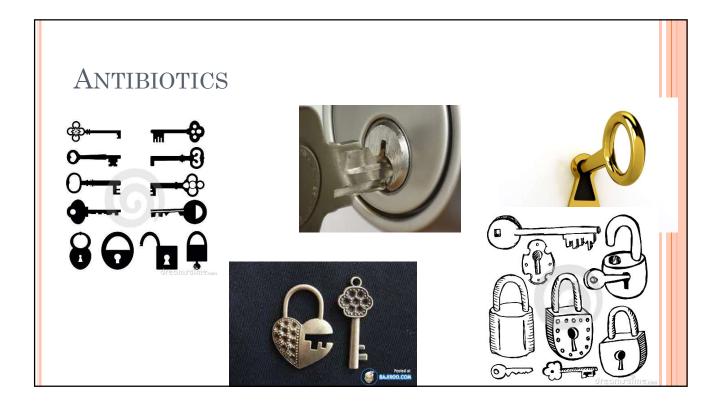
- The resistant form of certain bacteria
 - Survives harsh environmental conditions
 - Tolerant to many disinfectant technologies

How do disinfectants kill?

Bacteria and Fungi

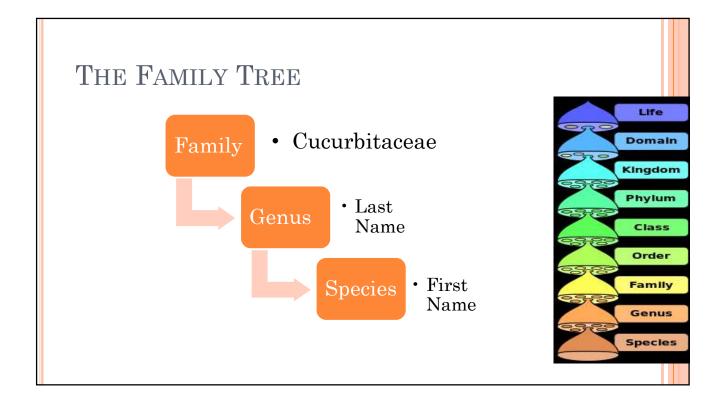
- Breaks cell wall, leaking out intracellular contents (oxidizers)
- Interrupts cell processes (quats/phenolics)
- Dehydrates the cell (alcohol)

Viruses

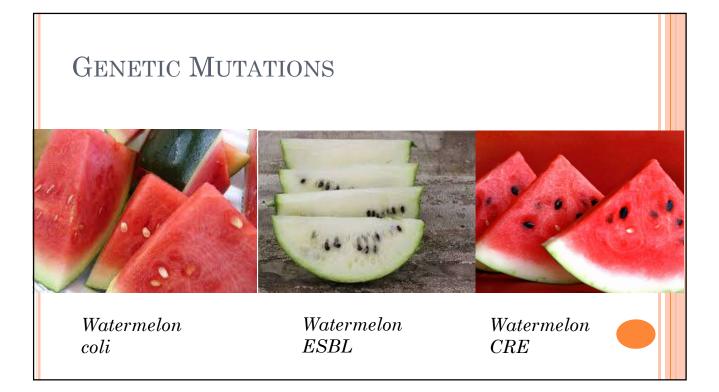

- · Chemically reacts with organism and breaks it down
- Think of it as chemically burning the organism, which causes it to die

How do disinfectants kill?

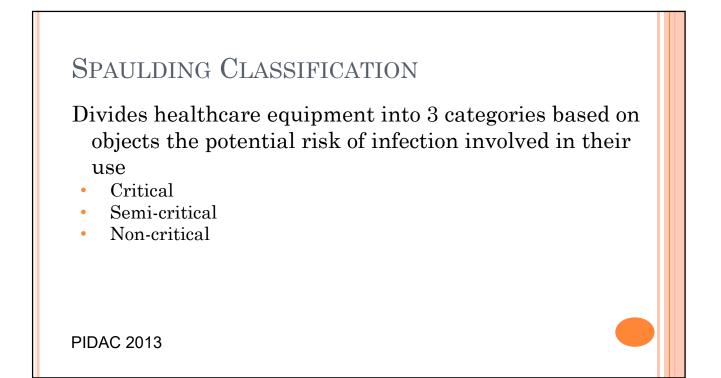
- Antibiotics work through a specific "lock and key" process.
- Disinfectants are less elegant.
- They are the sledgehammer to the watermelon
- Thus, there's minimal risk that bacteria will become immune to disinfectants the way they have antibiotics.

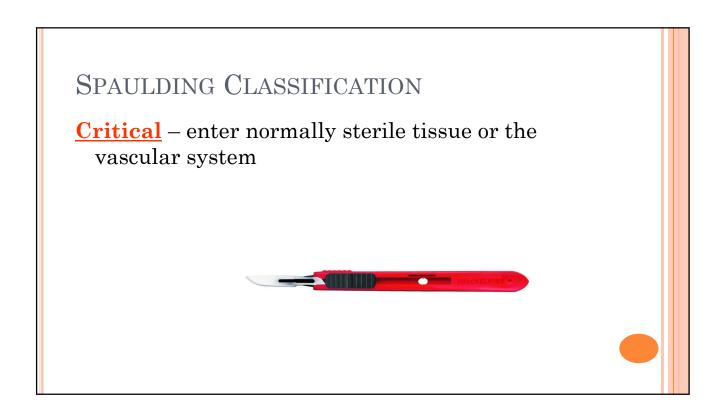

RESISTANT ORGANISMS

- Antibiotic resistance does NOT confer disinfectant resistance!
 - *E. coli* is *E. coli* whether it can produce a beta lactamase or a carbapenemase



UNDERLYING PRINCIPLES


Clean before disinfecting!


UNDERLYING PRINCIPLES

Equipment can be reused if it is labeled for reuse, cleaned, and reprocessed according to manufacturer's instructions

Single patient use should remain single patient use

SPAULDING CLASSIFICATION

Critical – enter normally sterile tissue or the vascular system
Semi-Critical – contact with mucous membranes or non-intact skin

SPAULDING CLASSIFICATION

Critical – enter normally sterile tissue or the vascular system
Semi-Critical – contact with mucous membranes or non-intact skin
<u>Non-Critical</u> – contact with intact skin
Bedpans
Commode
Urinals

SPAULDING CLASSIFICATION

Critical

• Must be sterilized and used sterile Semi-Critical

• Must receive at least High level Disinfection Non-Critical

• Must receive at least Low level Disinfection

DISINFECTION LEVELS

High Level

• Kills all microorganisms, with the exception of high numbers of bacterial spores

EFF	Adapted from Rutala et al. ICHE 2014;35(7):862 EFFECT OF DISINFECTANTS ON MICROORGANISMS						
	Organism	Туре	Examples				
	Bacterial Spores	Spore	Bacillus anthracis, Clostridioides difficile				
	Mycobacteria Small non-enveloped virus		M. tuberculosis				
			Poliovirus, Norovirus, HAV, Rhinovirus				
	Fungal spores	Fungus	Aspergillus, Penicillium, Trichophyton				
	Gram negative bacteria	Bacteria	<i>E. coli</i> , Klebsiella including CRE, Pseudomonas, Acinetobacter				
	Fungi (Vegetative)	Fungus	Candida				
	Large Virus (non-enveloped)	Virus	Adenovirus, Rotavirus				
^Resistant * Sensitive	Gram positive bacteria	Bacteria	Staphylococcus including MRSA Enterococcus including VRE				
Sensitive	Virus (enveloped)	Virus	HIV, HBV, HCV, Influenza, Coronavirus				

DISINFECTION

High

• Kills all microorganisms, with the exception of high numbers of bacterial spores

Intermediate Level

• Kills *M. tuberculosis*, vegetative bacteria, most viruses and fungi, but not spores

EFFECT OF DISINFECTANTS ON MICROORGANISMS						
	Organism	Туре	Examples			
	Bacterial Spores	Spore	Bacillus anthracis, Clostridiodes difficile			
	Mycobacteria	Bacteria	M. tuberculosis			
	Small non-enveloped virus	Virus	Poliovirus, Norovirus, HAV, Rhinovirus			
	Fungal spores	Fungus	Aspergillus, Penicillium, Trichophyton			
	Gram negative bacteria	Bacteria	<i>E. coli</i> , Klebsiella including CRE, Pseudomonas, Acinetobacter			
	Fungi (Vegetative)	Fungus	Candida			
	Large Virus (non-enveloped)	Virus	Adenovirus, Rotavirus			
S* ^Resistant * Sensitive	Gram positive bacteria	Bacteria	Staphylococcus including MRSA Enterococcus including VRE			
Sensitive	Virus (enveloped)	Virus	HIV, HBV, HCV, Influenza, Coronavirus			

DISINFECTION

High

• Kills all microorganisms, with the exception of high numbers of bacterial spores

Intermediate

• Kills *M. tuberculosis*, vegetative bacteria, most viruses and fungi, but not spores

Low Level

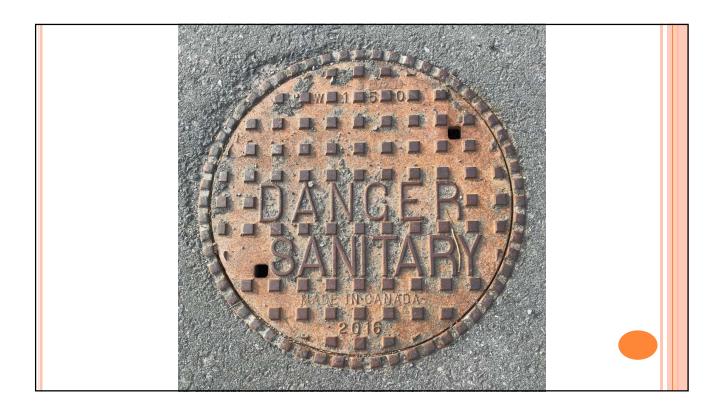
- Kills vegetative bacteria, enveloped viruses
 - Hospital Disinfectant
 - Pseudo and Staph aureus

EFFECT OF DISINFECTANTS ON MICROORGANISMS						
	Organism	Туре	Examples			
R^	Bacterial Spores	Spore	Bacillus anthracis, Clostridioides difficile			
	Mycobacteria	Bacteria	M. tuberculosis			
	Small non-enveloped virus	Virus	Poliovirus, Norovirus, HAV, Rhinovirus			
	Fungal spores	Fungus	Aspergillus, Penicillium, Trichophyton			
	→Gram negative bacteria	Bacteria	E coli, Klebsiella including CRE, Pseudomonas, Acinetobacter			
	Fungi (Vegetative)	Fungus	Candida			
	Large Virus (non-enveloped)	Virus	Adenovirus, Rotavirus			
C* ^Resistant * Sensitive	Gram positive bacteria	Bacteria	Staphylococcus including MRSA Enterococcus including VRE			
Sensitive	Virus (enveloped)	Virus	HIV, HBV, HCV, Influenza, Coronavirus			

METHODOLOGY

Sterilization is preferred over High Level Disinfection if tolerated or available

- Margin of safety
 - Always allow for a wide margin of safety

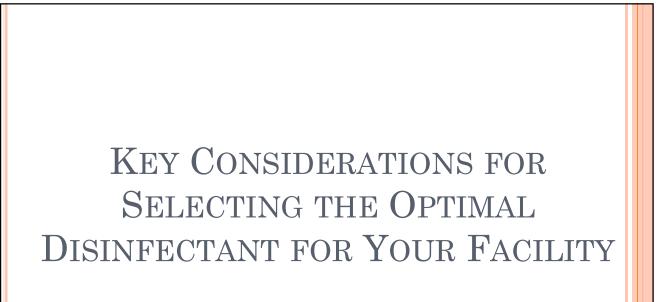

STERILIZATION

Steam Autoclaves

- Must be moisture resistant
- Wrapping and structure of equipment must allow penetration of steam
- 121-132°C for 20-30 minutes at 15 PSI (100kPa)

STERILIZATION

- Foot care equipment
 - "...must be sterile..."
 - Sterile at point of use?
 - Sterilized and used clean?
- Steam, chemical sterilants
 - Storage issues, rinse with sterile water
- •IPAC-Canada used sterile

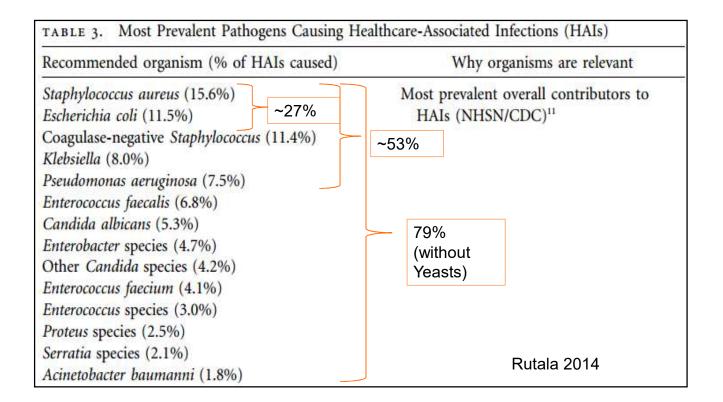


IDEAL DISINFECTANT (RUTALA 2014)

- 1. **Broad spectrum** kills pathogens of concern relevant to setting
- 2. Fast acting short kill and contact times listed on label
- **3. Remains wet** keep surfaces wet for entire contact time in single application
- 4. Unaffected by environmental factors not affected by organic matter, compatible with cleaners
- 5. Non-toxic and non-irritating to the user should have lowest possible safety risk to user
- 6. Compatible with surfaces should be proven compatible with common Healthcare surfaces and equipment

IDEAL DISINFECTANT

- 7. **Persistence** should have a residual effect on surfaces
- 8. Easy to use available in multiple forms to align with highest convenience for users
- **9.** Acceptable odor should have an acceptable odor for residents and staff
- **10.** Economical should not be cost prohibitive for facility
- **11. Soluble in water** so will not cause issues when it contacts water
- 12. Stable in concentrate and end-use dilution
- 13. Cleaner good cleaning ability
- 14. Nonflammable should have a flash point over $150^{\circ}F$


Rutala 2014 (2)

Scoring	
Consideration	Score (1-10)
Kill Claims	
Kill Times and Wet Contact Time	
Safety	
Ease of Use	
Other Factors	

KILL CLAIMS

Does the product kill the most prevalent healthcare pathogens, including those that:

- Cause most HAIs*?
- Cause most outbreaks?
- Are of concern in your facility?

Table 3. Reported Causative Pathogens, According to Type of Infection.*							lagill 2014
Pathogen	All Health Care– Associated Infections (N=504)†		Pneumonia (N = 110)	Surgical-Site Infections (N = 110)	GI Infections (N = 86)	UTIs (N=65)	Bloodstream Infections (N = 50)
	no. (%)	rank			number (percent)	
Clostridium difficile	61 (12.1)	1	0	0	61 (70.9)	0	0
Staphylococcus aureus	54 (10.7)	2	18 (16.4)	17 (15.5)	1 (1.2)	2 (3.1)	7 (14.0)
Klebsiella pneumoniae or K. oxytoca	50 (9.9)	3	13 (11.8)	15 (13.6)	1 (1.2)	15 (23.1)	4 (8.0)
Escherichia coli	47 (9.3)	4	3 (2.7)	14 (12.7)	1 (1.2)	18 (27.7)	5 (10.0)
Enterococcus species‡	44 (8.7)	5	2 (1.8)	16 (14.5)	5 (5.8)	11 (16.9)	6 (12.0)
Pseudomonas aeruginosa	36 (7.1)	6	14 (12.7)	7 (6.4)	1 (1.2)	7 (10.8)	2 (4.0)
Candida species§	32 (6.3)	7	4 (3.6)	3 (2.7)	3 (3.5)	3 (4.6)	11 (22.0)
Streptococcus species¶	25 (5.0)	8	7 (6.4)	8 (7.3)	2 (2.3)	2 (3.1)	2 (4.0)
Coagulase-negative staphylococcus species	24 (4.8)	9	0	7 (6.4)	0	1 (1.5)	9 (18.0)
Enterobacter species	16 (3.2)	10	3 (2.7)	5 (4.5)	0	2 (3.1)	2 (4.0)
Acinetobacter baumannii	8 (1.6)	11, tie	4 (3.6)	2 (1.8)	0	0	0
Proteus mirabilis	8 (1.6)	11, tie	1 (0.9)	5 (4.5)	0	1 (1.5)	0
Yeast, unspecified	8 (1.6)	11, tie	3 (2.7)	0	1 (1.2)	4 (6.2)	0
Stenotrophomonas maltophilia	8 (1.6)	11, tie	6 (5.5)	0	0	2 (3.1)	0
Citrobacter species	6 (1.2)	15, tie	2 (1.8)	1 (0.9)	0	1 (1.5)	0
Serratia species	6 (1.2)	15, tie	2 (1.8)	0	0	2 (3.1)	0
Bacteroides species	6 (1.2)	15, tie	0	5 (4.5)	1 (1.2)	0	0
Haemophilus species	6 (1.2)	15, tie	2 (1.8)	2 (1.8)	0	0	0
Viruses	3 (0.6)	19, tie	1 (0.9)	0	0	0	0
Peptostreptococcus species	3 (0.6)	19, tie	0	2 (1.8)	0	0	1 (2.0)

Pathogen	All Health Care– Associated Infections (N=504)†		Pneumonia (N=110)	Surgical-Site Infections (N=110)	GI Infections (N=86)	UTIs (N=65)	Bloodstream Infections (N = 50)
	no. (%)	rank			number (percent,)	
Clostridium difficile	61 (12.1)	1	0	0	61 (70.9)	0	0
Staphylococcus aureus	54 (10.7)	2	18 (16. <mark>4</mark>)	17 (15.5)	1 (1.2)	2 (3.1)	7 (14.0)
Klebsiella pneumoniae or K. oxytoca	50 (9.9)	3	13 (11.8)	15 (13.6)	1 (1.2)	15 (23.1)	4 (8.0)
Escherichia coli	47 (9.3)	4	3 (2.7)	14 (12.7)	1 (1.2)	18 (27.7)	5 (10.0)
Enterococcus species‡	44 (8.7)	5	2 (1.8)	16 (14.5)	5 (5.8)	11 (16.9)	6 (12.0)
Pseudomonas aeruginosa	36 (7.1)	€ 65%	<mark>6 4 (12.7)</mark>	7 (6.4)	1 (1.2)	7 (10.8)	2 (4.0)
Candida species§	32 (6.3)	7	4 (3.6)	3 (2.7)	3 (3.5)	3 (4.6)	11 (22.0)
Streptococcus species¶	25 (5.0)	8	7 (6.4)	8 (7.3)	2 (2.3)	2 (3.1)	2 (4.0)
Coagulase-negative staphylococcus species	24 (4.8)	9	0	7 (6.4)	0	1 (1.5)	9 (18.0)
Enterobacter species	16 (3.2)	10	3 (2.7)	5 (4.5)	0	2 (3.1)	2 (4.0)

Pathogen	All Infections (N = 427)	Pneumonia (N=110)†	Gastrointestinal Infection (N=91)‡	Surgical-Site Infection (N=69)§	Bloodstream Infection (N = 52)¶	Urinary Tract Infection (N=39)	Other Infection (N = 66)**
			numb	er of infections (perc	ent)		
C. difficile	66 (15)	0	66 (73)	0	0	0	0
Staphylococcus aureus	48 (11)	13 (12)	2 (2)	12 (17)	12 (23)	0	9 (14)
Escherichia coli	44 (10)	2 (2)	1 (1)	13 (19)	4 (8)	18 (46)	6 (9)
Candida species	26 (6)	7 (6)	3 (3)	1 (1)	7 (13)	3 (8)	5 (8)
Enterococcus species	23 (5)	1 (1)	2 (2)	8 (12)	6 (12)	4 (10)	2 (3)
Enterobacter species††	22 (5)	3 (3)	1 (1)	10 (14)	0	3 (8)	5 (8)
Pseudomonas aeruginosa	22 (5)	8 (7)	2 (2)	3 (4)	0	5 (13)	4 (6)
Klebsiella pneumoniae or K. oxytoca	21 (5)	6 (5)	1 (1)	3 (4)	3 (6)	7 (18)	1 (2)
Streptococcus species‡‡	21 (5)	4 (4)	1 (1)	9 (13)	6 (12)	0	1 (2)
Coagulase-negative staphylococcus	16 (4)	1 (1)	2 (2)	6 (9)	6 (12)	0	1 (2)

Magill 2018

MOST COMMON CAUSES OF OUTBREAKS AND WARD CLOSURES BY CAUSATIVE PATHOGEN, WHICH ARE RELATIVELY HARD TO KILL

Clostridioides difficile spores Norovirus / (Rhinovirus) Aspergillus Rotavirus Adenovirus

KILL TIMES AND WET-CONTACT TIME

- How quickly does the product kill the prevalent healthcare pathogens?
- Does the product keep surfaces visibly wet for the kill times listed on its label?

SAFETY

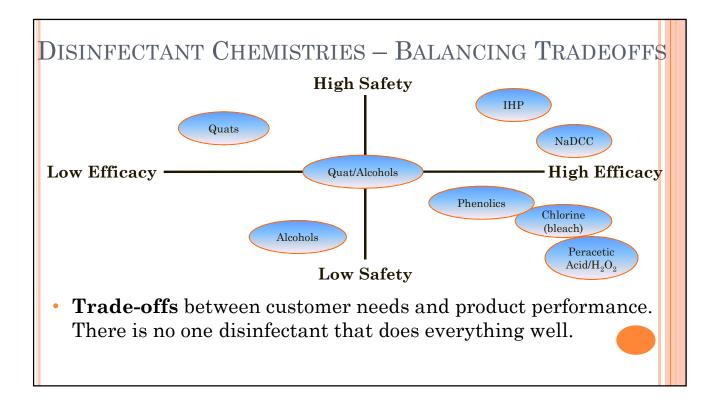
- Does the product have an acceptable toxicity rating?
- Does the product have an acceptable flammability rating?
- Is a minimal level of Personal Protective Equipment (PPE) required?
- Is the product compatible with the common surfaces in your facility?

EASE OF USE

- Is the product odor considered acceptable?
- Does the product have an acceptable shelf-life?
- Does the product come in convenient forms
 - liquids
 - sprays
 - refills
 - multiple wipe sizes
 - etc.

EASE OF USE

- Does the product work in the presence of organic matter?
- Is the product water soluble?
- Does the product clean and disinfect in a single step?
- Are the directions for use simple and clear?


OTHER FACTORS

- Does the supplier offer comprehensive training and ongoing education, both in-person and virtual?
- Does the supplier offer 24-7 customer support?
- Is the overall cost of the product acceptable (considering product capabilities, costs of infections that may be prevented and costs per compliant use)?
- Can the product help standardize disinfectants used in your facility?

Consideration	Score (1-10)
Kill Claims	
Kill Times and Wet Contact Time	
Safety	
Ease of Use	

LAST THOUGHT

- Evidence from peer-reviewed journals that product works?
 - Efficacy in lab is great...but real life can be different!

CHEMISTRY REPORT CARD talkcleantome.blogspot.com							
	Broad Spectrum of Efficacy	Realistic Contact Time	Superior Cleaning Efficacy	Safer to Use	Environmental Profile		
Improved H_2O_2	A to B	A to B	А	A to B	A to B		
QUATs	С	С	В	B-	С+		
QUAT/Alcohol	A to B	A to B	С	C to D	B to C		
Phenolics	B to C	С	В	D	С		
Chlorine	A to C	A to C	D	B to D	С		
Peracetic Acid	A to C	B to C	C to D	B to C	A to B		

STORE BRANDS

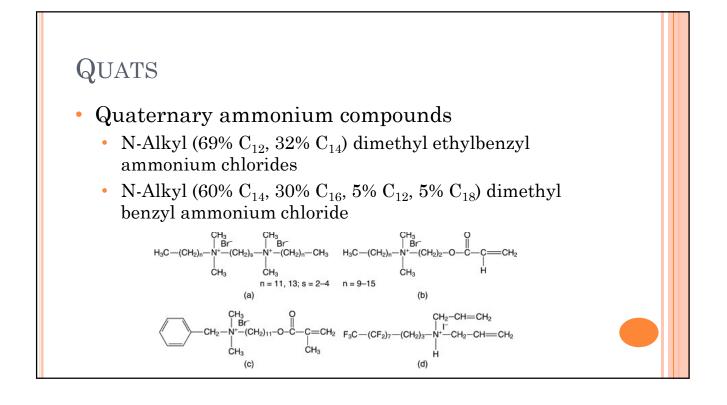
- Quat based
- Sanitize (99.9% of germs only - $3 \log_{10}$) 30 sec
- Disinfect (99.999) 4 minutes
- Cold and Flu viruses? •

EF	EFFECT OF DISINFECTANTS ON MICROORGANISMS							
	Organism	Туре	Examples					
R^	Bacterial Spores	Spore	Bacillus anthracis, Clostridioides difficile					
	Mycobacteria	Bacteria	M. tuberculo sis					
	Small non-enveloped virus	Virus	Poliovirus, Norovirus, Rhinovirus, Hep A					
	Fungal spores	Fungus	Aspergillus, Penicillium, Trichophyton					
	Gram negative bacteria	Bacteria	<i>E. coli</i> , Klebsiella including CRE, Pseudomonas, Acinetobacter					
	Fungi (Vegetative)	Fungus	Candida					
	Large Virus (non-enveloped)	Virus	Adenovirus, Rotavirus					
S*	Gram positive bacteria	Bacteria	Staphylococcus including MRSA Enterococcus including VRE					
	Virus (enveloped)	Virus	HIV, HBV, HCV, Influenza, RSV, SARS					
[^] Resistant * Sensitive		Ad	lapted from Rutala et al. ICHE 2014;35(7):862					

CHEMISTRY TIME!

SODIUM HYPOCHLORITE ADVANTAGES BUTALA WEBER AM JINEECT CONTROL 2013:41:S36-S41

RUTALA, WEBER. AM J INFECT CONTROL 2013;41:S36-S41


- Bactericidal, tuberculocidal, fungicidal, virucidal
- Sporicidal in high conc.
- Fast acting
- Inexpensive (in dilutable form) •
- Not flammable
- Unaffected by water hardness

- Reduces biofilms on surfaces
- Relatively stable (e.g., 50% reduction in chlorine concentration in 30 days)
- Used as the disinfectant in water treatment
- EPA registered

SODIUM HYPOCHLORITE DISADVANTAGES

- Reaction hazard with acids and ammonias
- Leaves salt residue
- Corrosive to metals (some readyto-use products may be formulated with corrosion inhibitors)
- Unstable active (some ready-touse products may be formulated with stabilizers to achieve longer shelf life)

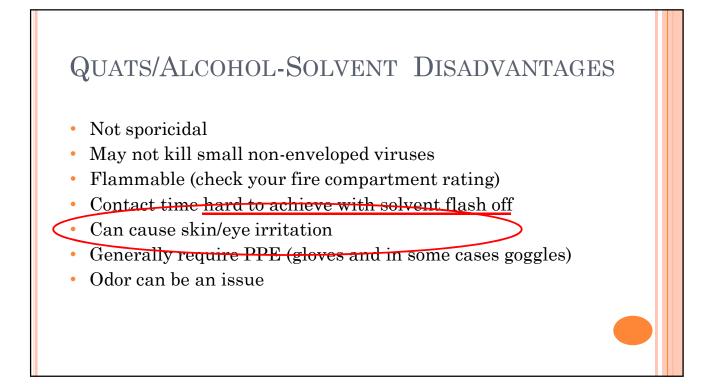
- Affected by organic matter
- Discolors/stains fabrics
- Potential hazard is production of trihalomethane
- Odor (some ready-to-use products may be formulated with odor inhibitors).
 Irritating at high concentrations

QUATS ADVANTAGES

- Bactericidal, fungicidal, virucidal against enveloped viruses (e.g., HIV)
- Good cleaning agents
- EPA registered
- Surface compatible
- Non-staining

- Persistent antimicrobial activity when undisturbed
- Inexpensive (in dilutable form)
- Not flammable

65


QUATS DISADVANTAGES

- Not sporicidal
- In general, not tuberculocidal and virucidal against nonenveloped viruses
- Longer Contact Time
- Residue left on surfaces
- High water hardness and cotton/gauze can make less microbicidal
- A few reports documented asthma as result of exposure to benzalkonium chloride
- Multiple outbreaks ascribed to contaminated benzalkonium chloride

QUATS/ALCOHOL-SOLVENT ADVANTAGES

- Bactericidal, fungicidal, virucidal
- EPA registered
- Surface compatible
- Non-staining
- Low Residue
- Faster than Quats

67

IMPROVED HYDROGEN PEROXIDE ADVANTAGES

- Bactericidal, tuberculocidal, fungicidal, virucidal
- Fast efficacy
- Easy compliance with wetcontact times
- Safe for workers (lowest EPA toxicity category, IV)
- Benign for the environment

- Surface compatible
- Non-staining
- EPA registered
- Not flammable

IMPROVED H.P. DISADVANTAGES

- (Perceived as) More expensive than some other disinfecting actives
- Not sporicidal at low concentrations
 - Alfa et. al. found some products to have 2 – 3 log kill of *C. difficile* spores
 - Cadnum et. al. found ~2.6 log kill
 - Some materials incompatibility

HEALTHCARE ENVIRONMENT

- Effective cleaning is more important than what is used
- Microfiber cloths
 - New issues coming to light
 - Possible to have quat binding
 - Cleans well, but does not wash well!
 - Check if done in-house
- Single dip methods
 - Only once into bucket with cloth
 - Wet cloth with squirt bottle
 - Pre-wetted wipes

QUAT BINDING

- Active ingredient (Quat) binds to cleaning cloth
 - Removed from solution
 - Wiping surface with wet cloth!
- All cotton cloths (towels, facecloths)
- Some microfiber cloths
- Check with quat test strip

CLEANING EQUIPMENT

- Must be clean (PIDAC)
 - No bathtub ring in mop buckets
 - No topping up of bottles
 - If using refillable buckets with dry cloths bucket must be cleaned after use before refilling with wipes and solution! (Kampf 2014)

ENVIRONMENTAL CLEANING

- It can be difficult!
- Use pre-wetted wipes (Alfa 2015, Boyce 2017)
 - Attach to equipment
 - Within resident care area (point of care) if chemistry is safe
 - Odors and VOC's

HOW OFTEN?

Targeted Moments of Environmental Disinfection (TMED):

- 1. Before placing food/drink on an over-bed table
- 2. Before/after any aseptic practice (care to wounds, lines, etc.)
- 3. After any procedure involving feces or respiratory secretions within a bed space
- 4. After patient/resident bathing (within a bed space)
- 5. After any object used on/by a patient/resident touches the floor

Gauthier 2020

SIMPLY

• If, during care, you touched it or used it: disinfect it!

HOW OFTEN?

- Public Restrooms?
- Outbreaks in community (Norovirus)
- Number of people triggers an EVS page?

SUMMARY

- We need to keep an eye on our environment
- We need to clean effectively and regularly
- Effective cleaning is not near as expensive as an outbreak!

REFERENCES

- Alfa MJ, et al. Improved eradication of Clostridium difficile spores from toilets of hospitalized patients using an accelerated hydrogen peroxide as the cleaning agent. BMC Infect Dis 2010;10:268 <u>http://www.biomedcentral.com/1471-2334/10/268</u>
- Alfa M, et al. Use of a daily disinfectant cleaner instead of a daily cleaner reduced hospital-acquired infection rates. AJIC 2015;43:141-6 http://dx.doi.org/10.1016/j.ajic.2014.10.016
- Boyce JM, et al. Prospective cluster controlled crossover trial to compare the impact of an improved hydrogen peroxide disinfectant and a quaternary ammonium-based disinfectant on surface contamination and health care outcomes. AJIC 2017;45:1006-10 http://dx.doi.org/10.1016/j.ajic.2017.03.010
- Cadnum JL, et al. Effectiveness and real-world materials compatibility of a novel hydrogen peroxide disinfectant cleaner. AJIC 2021;49:1572-4 <u>https://doi.org/10.1016/j.ajic.2021.08.008</u>

REFERENCES

- Gauthier J, et al. Targeted moments of environmental disinfection. Jt Comm J Qual Patient Saf 2020;46(3)167-172 DOI:<u>https://doi.org/10.1016/j.jcjq.2019.11.009</u>
- Kampf G, et al. Poorly processed reusable surface disinfection tissue dispensers may be a source of infection. BMC Infectious Diseases 2014;14:37 <u>http://www.biomedcentral.com/1471-</u> 2334/14/37
- Magill SS, et al. Multistate point-prevalence survey of health care
 associated infections. N Engl J Med 2014;370:1198-208. DOI: 10.1056/NEJMoa1306801
- Magill SS, et al. Changes in prevalence of health care-associated infections in US hospitals. N Engl J Med 2018;379:1732-44. DOI: 10.1056/NEJMoa1801550

REFERENCES

- Ontario Agency for Health Protection and Promotion (Public Health Ontario). Provincial Infectious Diseases Advisory Committee. Best practices for cleaning, disinfection and sterilization of medical equipment/devices. 3rd ed. Toronto, ON: Queen's Printer for Ontario; May 2013
- Rutala W, et al. Selection of the ideal disinfectant. ICHE 2014;35(7):855-65 DOI: 10.1086/676877
- Rutala 2014(2). Selection of an ideal disinfectant. Accessed 20190815 from: Disinfectionandsterilization.org
- Talkcleantome.blogspot.com accessed 20220106

