Hearing Conservation and Noise Control

Objectives

- What is sound?
- How the ear works
- How to measure noise
- What the Regulations say about noise
- Reading hearing tests
- Hearing Protection

What is Sound?

- Hertz (Hz)
 - Frequency a high or low pitch
- Decibels (dB)
 - The loudness of the sound

Frequency

- Humans can typically hear between 20 20,000 Hz
- You can hear different
 frequencies better than others

Decibels

- The quietest sound most humans can detect is 0 dB
- Some humans can even hear sounds as quiet as -5 dB

Common Sounds

- 30 dBA Library/Soft Whisper
- 50 dBA Light auto traffic (100 ft)
- 60 dBA Conversational Speech
- 70 dBA Noisy Restaurant
- 80 dBA Alarm Clock (2 ft)
- 100 dBA Firecrackers
- 110 dBA Pile Driver or Rock Concert
- 120 dBA Jet Takeoff or Auto Horn (3 ft)
 - 140 dBA Threshold of Pain or Air Raid Siren
 - 180 dBA Rocket Launching Pad

Anatomy of the Ear

How do we Hear?

• The outer ear collects the soundwaves

The waves hit the eardrum, and cause it to vibrate

The vibrations are sent through the ear bones
to the cochlea

Inside the Cochlea (snail shell)

Delicate hair cells vibrate to different frequencies

Hair cells detect the vibration, and send a signal to the brain

Loud sounds destroy the hair cells, and they stop functioning FOREVER!

The Ear does something else too!

- The Semi-circular canals
 - Three tubes laying perpendicular to one another
 - Filled with fluid and tiny hair cells
 - Depending on which way your head is tilted, the fluid moves the hair cells, an they send a signal to your brain
- Responsible for balance

How to measure noise

Decibels are measured on a logarithmic scale

• Every time you add **6 dB**, you **double** the sound pressure of the noise

Example

• In the field, we determined the loudness of two compressors right next to each other

- How loud is this area?
 - Do we add?
 - Do we add and take the average?

Difference in	Add to Higher		
dBA values	Value		
0 or 1 dB	3 dB		
2 or 3 dB	2 dB		
4 or 10 dB	1 dB		
10 or more dB	0 dB		

82 dB + 83 dB = 86 dB 87 dB + 89 dB = 91 dB

How does the Safety Person determine noise levels

- Sound level meter
 - Determine the loudness (dB) of noise at any given moment

Personal Dosimeters

- Worn by employees
- Measures the average loudness in an 8 hour work shift

"8hr. TWA" (Time Weighted Average)

 Can also measure noise dose

What do the Regulations Say?

- Between 80 dBA and 85 dBA
 - Inform workers of the hazards of the level of noise
 - On the request of the worker, provide hearing protection

What do the Regulations Say

- Over 85 dBA
 - Implement sound control measures that reduce the noise to which the worker is exposed to 85 dBA or less or
 - Inform workers of the hazards of the level of noise
 - Provide hearing protection that reduces the exposure to below 85 dBA
 - Provide the worker with annual audiometric tests which begin with a baseline within 70 days of exposure

What are Our Noise Levels?

Hearing Tests

- We test your hearing every year to determine if you have experienced a hearing loss (Standard Threshold Shift)
- Standard Threshold Shift is a change in hearing threshold relative to the baseline audiogram of an average of 10 db or more at 2000, 3000, and 4000 Hz in either ear.

Audiogram

	200 Hz	1000 Hz	2000 Hz	<mark>3000</mark> Hz	4000 Hz	6000 Hz
Baseline	5 dB	5 dB	<mark>0 dB</mark>	<mark>5 dB</mark>	<mark>10 dB</mark>	10 dB
Annual	5 dB	5 dB	<mark>10 dB</mark>	<mark>20 dB</mark>	<mark>35 dB</mark>	15 dB
Difference	0	0	<mark>10</mark>	<mark>15</mark>	<mark>25</mark>	5

Hearing Loss

- Impact One loud bang
- Cumulative Years of a noisy environment
- Tinnitus Ringing in the ears
- Presbycusis Hearing loss due to aging

Hearing Protection

- NRR Noise reduction rating
 - Express 25 NRR
 - Classic 29 NRR
 - Max Lite 30 NRR
- **DO NOT** Subtract the NRR from the noise level
 - WRONG (109 dB 25 NRR = 84 dB)
 - You must use the "Safety Factor"

Safety Factor

- Hearing protection is designed to reduce the noise by the NRR, but that is unlikely to happen due to :
 - Leaks in the seal
 - Vibration
 - Improper insertion

Example of NRR Protection

- The noise at a large compressor is 109
 dB
- You are wearing the Express plugs with an NRR of 25
- Do you have enough protection to place you below 90 dB level?

Hearing Protection at our Facility/Site/Program

- Type
- Limitations
- Cleaning
- Where, when, why and how they should be used
- When do I need new equipment
- Where do I get equipment
- What do I do if I have problems with the equipment, I.e. fit, allergy, etc.

A Final Note

- Hearing is important
- In time, noise levels at 85 dB can permanently damage your hearing
- Wear your hearing protection both at work and at home
- Choose hearing protection with a high NRR, and wear it properly